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Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics
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A standard stochastic integrate-and-fire model used for a long time as the simplest realistic neuronal de-
scriptor has been studied recently in the presence of deterministic time periodic driving force. The relevance of
this modification for the description of biological systems is discussed. In this way two possible sources of
periodic modulation are discoverd$1063-651X97)11602-9

PACS numbeps): 87.10+e€, 05.40+j

Stochastic processes have frequently been employed imsting level, and finallyA and w are the constants charac-
theoretical neurobiology in attempts to explain the mechaterizing the periodic driving force. For notational simplicity
nism of neuronal firingsee[ 1] for reviews. In most of these  we set the resting level to zero, as was also dori@jnThe
neuronal models, one-dimensional stochastic processes seeemF(t) in Eq. (1) represents the noise term—Gaussian and
to describe the membrane depolarization whose developme#tcorrelated with zero mean and strengtin variance 2D.
depends on the integrated activity of synaptic inputs. Whemhe membrane potentiaf given by Eq.(1) makes excur-
the membrane potential of a model neuron exceeds a fixesions to the firing threshold located &t x,. As soon as the
threshold level for the first time, the neuron fires, i.e., pro-threshold is reached, a firing event occurs and the membrane
duces an action potential. After each firing, the membrangotential is reset deterministically and instantaneously to its
depolarization is reset to an initial value and subsequent instarting pointX(0). The reset in mode(l), as presented in
puts lead to another discharge. Thus, the interspike interv4B], includes the restart of the periodic driving force which
corresponds to the first passage time for the stochastic prenables to apply the renewal theory abstraction again. Simi-
cess describing the membrane potential, and it is a randomarly to all one-dimensional integrate-and-fire models with
variable defined as the time interval from the moment oftime-homogeneous input, also in this model, the interspike
resetting to the moment of the first threshold crossing. Théntervals are identified with the first passage timeXadcross
resetting of the membrane potential wipes out all theS and the properties of this random variable are thoroughly
memory on the input that has been accumulated at the intestudied in[3]. This has to be stressed as the first-passage-
grating device prior to the firing. This erasure of the memorytime problem for the OU process its¢/h=0 in Eq.(1)] has
has been criticized since the early days of the integrate-andieen a challenging task for many decades an@jra very
fire models[2]. Under the condition of time homogeneity of novel approach to this problem was introduced.
the underlying input stochastic processes, the resetting Model (1) without its random and periodic parts is the
mechanism ensures that the interspike intervals are indepehasic neuronal model,
dent and identically distributed random variables and thus .
they form a renewal process. Unfortunately, the experimental X==xIt+u, X(0)=Xo, 2
data do not always show the renewal character. Despite tI~|<enown also as the deterministic leaky-integrator or Lapicque
critique and partial discrepancy with the experimental data dells]. | lizati _ yt hg b b ”q
integrate-and-fire models have been continuously developefgO el[5]. In generalizations of2) u=(t) has been usually

and they play an indisputable role in theoretical studies on ent|f.|ed. with the input signal and the S|m.ple assumption of
neuronal coding1]. a periodic rather than constant stimulation has been em-

Recently, two paperE3,4] appeared aimed at an analysis ployed. The main characteristic of the deterministic leaky-

of the integrate-and-fire models with time-variable input. |nintegrator model with periodic force is that it is able to pro-

[3], the membrane potential is characterized by an Ornsteinquce the phase locking effect. This means that the crossings

Uhlenbeck(OU) stochastic process with a periodic driving of X.(t) through the threshol§ may be phgse lOCked.W'th t_he.
force, period of a stimulus. Formally, we are interested in a distri-

bution of time pointst; <t,<---<t,<---, such that at each
dXx of these time instants, the threshold is reached for the first
—=—XIt+u+F(t)+A cogwt), X(0)=x,, (1) time, x(t,)=S, then the functiorx(t) is reset to its initial
dt valuex, and fort>t,

whereX={X(t);t=0} represents the cell membrane voltage, Xx=—x/T+u+A cogwt), X(ty)=Xo. 3)

u being a drift paramete(in [3] it was required to be posi-

tive), 70 being a constant governing the decayXoto a  Interspike intervals for modéB) are defined at . ; —t, . Of
course, restarting the periodic component of the model
whenever the threshold is reached, only the interspike inter-
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sented is a cycle histogram reflecting the spike synchronizaby a short rise time. Therefore, the corresponding membrane
tion to the phase of the driving for¢é]. Using this method, potential change is modeled by a step discontinuity. The
the times of spike occurrences are converted md@2so  stream of PSPs is considered Poissonian which appears an
that they fall within the interval of one period7Z». Model  appropriate imitation mainly for spontaneous activity or for
(3) has been mainly used for describing sensory neurons urevoked activity due to a constant stimulus of long duration.
der external periodic stimulatiof6]. However, one can It is important to stress that in modé}) there is a clear
imagine that also a periodic activity of higher-order neurondistinction between intrinsic parametdrs i, a, S, and the
may lead to the use of this model. Actually, the experimentateset valugand the input paramete¢s and3). The intrinsic
examples are not always taken from the first-order sensorgarameters are characteristics of the neuron and can be mea-
neurons, which are in direct contact with the external world,sured directly. The input parameters characterize the activity
but from higher-order centers, where the stimulation is probeof the network, the stimulus, or both and must be estimated
ably reflected by a synchronized increase and decrease ffbm experimental data. If12], the ranges of the parameters
postsynaptic activation coming from the neurons closer tmf Stein’s model are given. A consequence of the diffusion
the transduction of an external physical sigf@ht, chemi-  approximation is that the clear distinction between these two
cal compound, soundnto an internal electrical representa- types of parameters disappeft8]. This is the price paid for
tion. This effect can appear even without an apparent extethe simplification of mathematical problems related to the
nal stimulation being simply caused by any periodicmodel.
synchronization of the input activity. Even a single pace- Kallianpur [10] used the formulation of Ricciardil4],
maker neuron acting upon the studied neuron and contributvhere both excitatory and inhibitory inputs are numerous
ing substantially to its membrane potential can represent Roisson processes with different intensities as well as differ-
periodic input[7]. ent jumps. Such a description is biologically more transpar-
Given model(3), it looks natural to study Eql) as its  ent(realistio as each of the processes characterizes one syn-
stochastic counterpart. As mentioned before, md8elvas  apse with its intensity of PSPs as well as its PSP amplitude,
derived from Eq.(2) and the OU process is a stochastic which may among other features reflect the distance from the
counterpart to Eq(2). However, the OU model has probably trigger zone. However, their description is notationally com-
never been postulated as a randomization of(Bdput it has  plicated and for our purpose unnecessary. We will use the
always been derived as a diffusion approximation to a modehpproach of11] employing Eq.(4) where all the excitatory
with discontinuous trajectorid$]. In this way the model has inputs are represented by one input stream and where the
kept the biological interpretation of its parameters and thesecond stream represents the inhibitory inputs. The first and
significance of the underlying mechanisms has been transecond infinitesimal moments &f defined by Eq(4) are
parent. Similarly, through a direct derivation of Ea) from
a biologically interpretable model some deeper insight can E(X(t+A) = X(1)[X(t)=x)

be gained. The aim of this note is to rederive madgland Ml(x)—AthO A

to show what this derivation implies for the results presented

in [3,4]. The paper should contribute to a better understand- =—x/7+Na+ 8i, 5)

ing of the resetting after spike generation, and further, it

should point out the future tasks to be solved. C E[X(t+A) =X PX(t)=x) S,
The simplest, biologically acceptable and most common M2(X)= lim A =\a’+pi

way to derive model1l) is to start from Stein’s mod€l9] a—0 ©6)

describing fluctuations of the membrane potential. In this

manner also the OU model was formally derivgtD,1]] In diffusion models the membrane potential is described
including the proof that the first passage time of Stein'shy a scalar diffusion process. Let us recall how the OU
model converges to the first passage time of OU processnodel can be obtained from E€f). In general, a sequence
Stein’s model of the membrane potential is a one-gf models {X,} given by Eq.(4) and characterized by a
dimensional stochastic proce¥s={X(t);t=0} which can  quadruplet{\,,5,.a,.i,} is needed such that far—oo it

be expressed in the form holds: A,—%, B,—%, a,—0, i,—0, the quantitieg5) and

(6) converge to the drift and infinitesimal variance of the OU
process, and the higher infinitesimal moments tend to zero.
An example assuring the existence of the OU limit of &.

(4) is given by

dX(t)=— % X(t)dt+adP"(t)+idP~(t); X(0)=0,

— 2,2 — 2,2
where 7>0, i<0<a are constantsP*(t), P~ (t) are two M=n“o%2+nu,  By=n<o’l2, (@)

independent homogeneous Poisson processes with the inten-
sities\ and 3, respectively. Following modeK) the values

a andi represent the amplitudes of excitatory and inhibitoryinducing
postsynaptic potentials, respectively. The membrane time
constantr reflects the exponential decay ¥fto the resting M(X)p— =X T+,  My(X),— o> 9)
level which is again transformed to zero. The initial depolar-

ization is put equal to the resting potential. Properties of thaVe can see that even<0 can be obtained since with nega-
model (4) are as follows: synaptic activation of a neurontive u in Eqg. (7) the sequence of, may start from a fixed
leads to a postsynaptic potenti®lSP which is characterized valuen, of the indexn.

a,=—i,=1/n 8
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Now, we need to decide how to change E@$.and(8)to  the parametei the neuron fires with higher probability at
achieve Eq(1). This can be done from a biological point of intervals close to the proximity of multiples ofi2w creating
view in two different manners. The difference follows from the phase locking effect.
the fact which of the involved parameters are considered as Longtin and his co-workerfl6] simulated bistable neu-
varying in time and which are kept time independent. ronal model analogous to E¢l),

(A) Endogenous periodicityThis assumes that whereas
the intensities of input processes are kept invariant in time, dx
the amplitudes of PSPs are periodically changing. For ex- d—=—dU(X)/dx+F(t)+A codwt), X(0)=x,,

ample, we may consider t
(14
1(1+2A cos(wt)) _ 1 10
&=h no C T T (19 whereU is a double-well potential. ModélL4) permits us to
discard the phenomenological assumption of the firing
while the intensities\,, 3, are defined by Eq(7). thresholdS of the integrate-and-fire models as the interspike
(B) Exogenous periodicitylt may be characterized by intervals, in this model, are identified with the transitioe-
assuming time varying intensities, for example, turn) times between two states. Viewing the state variable as

the soma potential, the model assumes a stochastic reset
Nn=n[p+A cogwt)]+n?0?2, B,=n?c?2, (1) from an excited statéhe right wel) to the resting statéhe
] o ] ] left well). This model lacks a simple intuitive interpretation
and amplitudes of PSPs time invariant as defined by@q.  similar to that of Stein’s model, however, the bistability of
Starting index in Eqs(10) and (11) has to be selected in a realistic (Hodgkin-Huxley-typg neuronal models may serve
way that assurea,>0, respectivelyr,>0, which is only a a5 a strong reasoning for them. The periodic component
formal restriction, similar to the problem of negatiye as  seems to be of exogenous nature in all the bistable models.

we are interested in the |||'T'||t']—>oo In both of the above We have seen that mode]) can be derived using a real-
cases we obtain istic biological reasoning, at least at the level corresponding
to the derivation of the OU process as a neuronal model. The
M1(X)p— —X/ 7+ pw+ A cog wt) 12 problem that stands out is the reset after the spike generation,

o ) namely, the question of the periodic component restart. For
a generalization based on periodically varying intensities waghe nerve impulse initiation destroys all remaining PSPs or,
mentioned even in Stein’s original pap@], where it was iy other words, that there is no transmitter persistence. This
written “A cyclic form of the function\(t) can be used in s g practically unavoidable feature of one-point models and
the cases to simulate the expectedultipeaked distribu-  can pe only phenomenologically overcome by a random re-
tions.” Nonhomogeneous Poisson processes have been sugt[17] or by taking into account, at least minimally, the
qessfully used in neuronal modeling as well as in the d_escripspatia| properties of the neurdi8,19. For nonhomoge-
tion of experimental data[15]. The above described peous input the reset, in addition to the destroying the accu-
procedure clearly illustrates the distinction between the inmylated potential built up at the dendrite, may also reset the
trinsic and the input parameters present in Stein’s model anﬁ!,put signal. Now, we may compromise and accept the peri-
further blurred by the diffusion approximation. odic force restart when it does not involve any external
Recently, in[7] a model similar to both Eqs1) and(4)  modulation, but we should not accept it when the external

form using as much as possible the notation of E4. more physiologically plausible and it is clear that mo¢B|
1 was originally proposed for this situation since [i8] the
__ = LaPt () + . _ periodic part was cal_led “stimulus.” _
X T fOX(s)ds aPr(v+altol2a]; X(0)=0, Under the scenario of endogenous periodicity, the inter-

(13 spike intervals are always independent and identically dis-
tributed random variables forming a renewal process, not

where[ ] stands for an integer part. This is also an integrateonly in the case of Poissonian approximation as mentioned in
and-fire model with a straightforward interpretation. There[3]. The solution to the first passage time problem for model
are two excitatory inputs to the neuron; the first one is a1) is only the first step in the case of exogenous periodicity.
pacemaker neuron firing at constant intervaigd? the sec- What remains is to analyze the effect of not restarting the
ond one is a Poissonian neuron with firing intensityThe  periodic driving force. The most interesting part of this in-
regular input corresponds to the cosine part in@ygand the  vestigation should not be based on interspike intervals, as
Poissonian to the noise. In the above introduced classificahese are correlated and thus their histogram has a limited
tion this is an example of exogenous periodicity acting uporinformation value, but on the cycle histogram. A study
the neuron. The authors pf] studied the model in a special analogous to those on the deterministic leaky-integrator
parametric regime when two or more input pulses suffi-model(3) with periodic driving force should be performed.
ciently close together can evoke a response—a coincidend®s predicted in[3], for the Poissonian limit of firing times
detector. A symmetrical shape of the autocorrelation funcand for the high driving frequenay, with respect to the time
tion in their Fig. 1 suggests that the regulperiodig input  to a crossing, there would be a negligible difference between
was not restarted after the firing. Within a certain range othe models with and without the driving force restart.
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Bulsaraet al. [3] present an extensive discussion of theirnarrow and symmetric—close to the the normal distribution.
results including the case when no periodical signal is apin the opposite case, whenr<S and the initial voltage is
plied, A=0 (see Figs. 4—6 of3]). Furthermore, they com- not close to the threshold, the firings appear in accordance
pare their analytical results with the simulatidsee Sec. IV with a Poisson procegiterspike intervals are exponentially
of [3]). The coincidences between approximations and simugdistributed and approximations for the intensity of this pro-
lations are very impressive. Nevertheless, in all these casegss are well know24]. The most critical and therefore
the simulated densities are systematically shifted to theyso the most interesting case is wher~S, where the re-
longer interspike intervals than those derived analyticallyg,jts are not so predictable. When periodic modulation is
This effect may be caused by the overestimation of the firsf,c|yded, this separation can also be made but the amplitude
passage time by simulatid0]. Therefore, a better way to  f the periodic signal has to be considered.
judge the efficiency of the method would be a comparison | the noise-activated regimg,<S, a new approxima-
with existing tables[21] or vyith sophistic_ated numerical _tion method is devised if3]. The firing time is viewed as
methods[22]. These comparisons would increase the reli-grsing from two distinct events; the passage from the initial
a_blllty of the results when the periodic dnvmg forg:e IS con- gepolarization to the asymptotic potentiat and the passage
sidered. In that case no other method beside simulation igom this value to the threshold. The first component has a
available. o _ known probability density functiofi1,3]. The second com-

In [3], the model performance is divided with respect 0 ponent is in3], approximated by replacing the model by the
the mutual position of the thresholand w7~ which is the  \jener process with a driftperfect integrator modglcon-
asymptotic voltage of the model without modulati®®=0).  fined between a lower reflectingr and an upper absorbing
This is obwously the most natural separation because Wheﬂoundarys. The first-passage-time problem for the Wiener
S<urthe crossings _of the threshold are present, even _V\/_lthprocess confined between reflecting and absorbing boundary
out any noise and vice versa. Nevertheless, a finer divisiony 55 solved recently if25]. A detailed comparison ¢8] and
implicitly also present if3], may lead to the separation of [25] seems to be worth the effort.
the model neuron activity into three regioh23,1§. For
©n7=>S we may expect that the role of the noise is relatively This work was partly supported by Grant No.
small; the probability density of the first passage time is309/95/0627 from the grant agency of the Czech Republic.
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