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Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics
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A standard stochastic integrate-and-fire model used for a long time as the simplest realistic neuronal de-
scriptor has been studied recently in the presence of deterministic time periodic driving force. The relevance of
this modification for the description of biological systems is discussed. In this way two possible sources of
periodic modulation are discovered.@S1063-651X~97!11602-6#

PACS number~s!: 87.10.1e, 05.40.1j
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Stochastic processes have frequently been employe
theoretical neurobiology in attempts to explain the mec
nism of neuronal firing~see@1# for reviews!. In most of these
neuronal models, one-dimensional stochastic processes
to describe the membrane depolarization whose developm
depends on the integrated activity of synaptic inputs. Wh
the membrane potential of a model neuron exceeds a fi
threshold level for the first time, the neuron fires, i.e., p
duces an action potential. After each firing, the membr
depolarization is reset to an initial value and subsequen
puts lead to another discharge. Thus, the interspike inte
corresponds to the first passage time for the stochastic
cess describing the membrane potential, and it is a ran
variable defined as the time interval from the moment
resetting to the moment of the first threshold crossing. T
resetting of the membrane potential wipes out all
memory on the input that has been accumulated at the
grating device prior to the firing. This erasure of the memo
has been criticized since the early days of the integrate-a
fire models@2#. Under the condition of time homogeneity o
the underlying input stochastic processes, the reset
mechanism ensures that the interspike intervals are inde
dent and identically distributed random variables and t
they form a renewal process. Unfortunately, the experime
data do not always show the renewal character. Despite
critique and partial discrepancy with the experimental da
integrate-and-fire models have been continuously develo
and they play an indisputable role in theoretical studies
neuronal coding@1#.

Recently, two papers@3,4# appeared aimed at an analys
of the integrate-and-fire models with time-variable input.
@3#, the membrane potential is characterized by an Ornst
Uhlenbeck~OU! stochastic process with a periodic drivin
force,

dX

dt
52X/t1m1F~ t !1A cos~vt !, X~0!5x0 , ~1!

whereX5$X(t);t>0% represents the cell membrane voltag
m being a drift parameter~in @3# it was required to be posi
tive!, t.0 being a constant governing the decay ofX to a
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resting level, and finally,A andv are the constants charac
terizing the periodic driving force. For notational simplicit
we set the resting level to zero, as was also done in@3#. The
termF(t) in Eq. ~1! represents the noise term—Gaussian a
d correlated with zero mean and strength~or variance! 2D.
The membrane potentialX given by Eq.~1! makes excur-
sions to the firing threshold located atS.x0 . As soon as the
threshold is reached, a firing event occurs and the memb
potential is reset deterministically and instantaneously to
starting pointX~0!. The reset in model~1!, as presented in
@3#, includes the restart of the periodic driving force whic
enables to apply the renewal theory abstraction again. S
larly to all one-dimensional integrate-and-fire models w
time-homogeneous input, also in this model, the intersp
intervals are identified with the first passage time ofX across
S and the properties of this random variable are thoroug
studied in@3#. This has to be stressed as the first-passa
time problem for the OU process itself@A50 in Eq. ~1!# has
been a challenging task for many decades and in@3# a very
novel approach to this problem was introduced.

Model ~1! without its random and periodic parts is th
basic neuronal model,

ẋ52x/t1m, x~0!5x0 , ~2!

known also as the deterministic leaky-integrator or Lapicq
model@5#. In generalizations of~2! m5m(t) has been usually
identified with the input signal and the simple assumption
a periodic rather than constant stimulation has been
ployed. The main characteristic of the deterministic leak
integrator model with periodic force is that it is able to pr
duce the phase locking effect. This means that the cross
of x(t) through the thresholdSmay be phase locked with th
period of a stimulus. Formally, we are interested in a dis
bution of time pointst1,t2,•••,tk,•••, such that at each
of these time instants, the threshold is reached for the
time, x(t k

2)5S, then the functionx(t) is reset to its initial
valuex0 and for t.tk

ẋ52x/t1m1A cos~vt !, x~ tk
1!5x0 . ~3!

Interspike intervals for model~3! are defined astk112tk . Of
course, restarting the periodic component of the mo
whenever the threshold is reached, only the interspike in
vals of constant length are produced.

The main form in which the results for Eq.~3! as well as
for the experiments with periodic stimulation have been p
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sented is a cycle histogram reflecting the spike synchron
tion to the phase of the driving force@6#. Using this method,
the times of spike occurrences are converted mod2p/v so
that they fall within the interval of one period, 2p/v. Model
~3! has been mainly used for describing sensory neurons
der external periodic stimulation@6#. However, one can
imagine that also a periodic activity of higher-order neuro
may lead to the use of this model. Actually, the experimen
examples are not always taken from the first-order sens
neurons, which are in direct contact with the external wo
but from higher-order centers, where the stimulation is pr
ably reflected by a synchronized increase and decreas
postsynaptic activation coming from the neurons closer
the transduction of an external physical signal~light, chemi-
cal compound, sound! into an internal electrical represent
tion. This effect can appear even without an apparent ex
nal stimulation being simply caused by any period
synchronization of the input activity. Even a single pac
maker neuron acting upon the studied neuron and contri
ing substantially to its membrane potential can represe
periodic input@7#.

Given model~3!, it looks natural to study Eq.~1! as its
stochastic counterpart. As mentioned before, model~3! was
derived from Eq.~2! and the OU process is a stochas
counterpart to Eq.~2!. However, the OU model has probab
never been postulated as a randomization of Eq.~2! but it has
always been derived as a diffusion approximation to a mo
with discontinuous trajectories@8#. In this way the model has
kept the biological interpretation of its parameters and
significance of the underlying mechanisms has been tr
parent. Similarly, through a direct derivation of Eq.~1! from
a biologically interpretable model some deeper insight
be gained. The aim of this note is to rederive model~1! and
to show what this derivation implies for the results presen
in @3,4#. The paper should contribute to a better understa
ing of the resetting after spike generation, and further
should point out the future tasks to be solved.

The simplest, biologically acceptable and most comm
way to derive model~1! is to start from Stein’s model@9#
describing fluctuations of the membrane potential. In t
manner also the OU model was formally derived@10,11#
including the proof that the first passage time of Stei
model converges to the first passage time of OU proc
Stein’s model of the membrane potential is a on
dimensional stochastic processX5$X(t);t>0% which can
be expressed in the form

dX~ t !52
1

t
X~ t !dt1adP1~ t !1 idP2~ t !; X~0!50,

~4!

where t.0, i,0,a are constants;P1(t), P2(t) are two
independent homogeneous Poisson processes with the i
sitiesl andb, respectively. Following model~4! the values
a and i represent the amplitudes of excitatory and inhibito
postsynaptic potentials, respectively. The membrane t
constantt reflects the exponential decay ofX to the resting
level which is again transformed to zero. The initial depol
ization is put equal to the resting potential. Properties of
model ~4! are as follows: synaptic activation of a neuro
leads to a postsynaptic potential~PSP! which is characterized
a-

n-

s
l
ry
,
-
of
o

r-

-
t-
a

el

e
s-

n

d
d-
it

n

s

s
s.
-

en-

e

-
e

by a short rise time. Therefore, the corresponding membr
potential change is modeled by a step discontinuity. T
stream of PSPs is considered Poissonian which appear
appropriate imitation mainly for spontaneous activity or f
evoked activity due to a constant stimulus of long duratio

It is important to stress that in model~4! there is a clear
distinction between intrinsic parameters~t, i , a, S, and the
reset value! and the input parameters~l andb!. The intrinsic
parameters are characteristics of the neuron and can be
sured directly. The input parameters characterize the acti
of the network, the stimulus, or both and must be estima
from experimental data. In@12#, the ranges of the paramete
of Stein’s model are given. A consequence of the diffus
approximation is that the clear distinction between these
types of parameters disappears@13#. This is the price paid for
the simplification of mathematical problems related to t
model.

Kallianpur @10# used the formulation of Ricciardi@14#,
where both excitatory and inhibitory inputs are numero
Poisson processes with different intensities as well as dif
ent jumps. Such a description is biologically more transp
ent ~realistic! as each of the processes characterizes one
apse with its intensity of PSPs as well as its PSP amplitu
which may among other features reflect the distance from
trigger zone. However, their description is notationally co
plicated and for our purpose unnecessary. We will use
approach of@11# employing Eq.~4! where all the excitatory
inputs are represented by one input stream and where
second stream represents the inhibitory inputs. The first
second infinitesimal moments ofX defined by Eq.~4! are

M1~x!5 lim
D→0

E„X~ t1D!2X~ t !uX~ t !5x…

D

52x/t1la1b i , ~5!

M2~x!5 lim
D→0

E„@X~ t1D!2X~ t !#2uX~ t !5x…

D
5la21b i 2.

~6!

In diffusion models the membrane potential is describ
by a scalar diffusion process. Let us recall how the O
model can be obtained from Eq.~4!. In general, a sequenc
of models $Xn% given by Eq. ~4! and characterized by a
quadruplet$ln ,bn ,an ,i n% is needed such that forn→` it
holds: ln→`, bn→`, an→0, i n→0, the quantities~5! and
~6! converge to the drift and infinitesimal variance of the O
process, and the higher infinitesimal moments tend to z
An example assuring the existence of the OU limit of Eq.~4!
is given by

ln5n2s2/21nm, bn5n2s2/2, ~7!

an52 i n51/n ~8!

inducing

M1~x!n→2x/t1m, M2~x!n→s2. ~9!

We can see that evenm,0 can be obtained since with neg
tive m in Eq. ~7! the sequence ofln may start from a fixed
valuen0 of the indexn.
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Now, we need to decide how to change Eqs.~7! and~8! to
achieve Eq.~1!. This can be done from a biological point o
view in two different manners. The difference follows fro
the fact which of the involved parameters are considered
varying in time and which are kept time independent.

~A! Endogenous periodicity. This assumes that wherea
the intensities of input processes are kept invariant in tim
the amplitudes of PSPs are periodically changing. For
ample, we may consider

an5
1

n S 112
A cos~vt !

ns2 D , i n52
1

n
, ~10!

while the intensitiesln , bn are defined by Eq.~7!.
~B! Exogenous periodicity. It may be characterized b

assuming time varying intensities, for example,

ln5n@m1A cos~vt !#1n2s2/2, bn5n2s2/2, ~11!

and amplitudes of PSPs time invariant as defined by Eq.~8!.
Starting index in Eqs.~10! and ~11! has to be selected in
way that assuresan.0, respectively,ln.0, which is only a
formal restriction, similar to the problem of negativem, as
we are interested in the limit,n→`. In both of the above
cases we obtain

M1~x!n→2x/t1m1A cos~vt ! ~12!

and constant infinitesimal variances2. Let us remember tha
a generalization based on periodically varying intensities w
mentioned even in Stein’s original paper@9#, where it was
written ‘‘A cyclic form of the functionl(t) can be used in
the cases to simulate the expected~multipeaked! distribu-
tions.’’ Nonhomogeneous Poisson processes have been
cessfully used in neuronal modeling as well as in the desc
tion of experimental data@15#. The above described
procedure clearly illustrates the distinction between the
trinsic and the input parameters present in Stein’s model
further blurred by the diffusion approximation.

Recently, in@7# a model similar to both Eqs.~1! and ~4!
was used. It is more convenient to write it in the integ
form using as much as possible the notation of Eqs.~4!,

X~ t !52
1

t E
0

t

X~s!ds1aP1~ t !1a@ tv/2p#; X~0!50,

~13!

where@ # stands for an integer part. This is also an integra
and-fire model with a straightforward interpretation. The
are two excitatory inputs to the neuron; the first one is
pacemaker neuron firing at constant intervals 2p/v, the sec-
ond one is a Poissonian neuron with firing intensityl. The
regular input corresponds to the cosine part in Eq.~1! and the
Poissonian to the noise. In the above introduced classifi
tion this is an example of exogenous periodicity acting up
the neuron. The authors of@7# studied the model in a specia
parametric regime when two or more input pulses su
ciently close together can evoke a response—a coincide
detector. A symmetrical shape of the autocorrelation fu
tion in their Fig. 1 suggests that the regular~periodic! input
was not restarted after the firing. Within a certain range
as
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the parameterl the neuron fires with higher probability a
intervals close to the proximity of multiples of 2p/v creating
the phase locking effect.

Longtin and his co-workers@16# simulated bistable neu
ronal model analogous to Eq.~1!,

dX

dt
52dU~X!/dx1F~ t !1A cos~vt !, X~0!5x0 ,

~14!

whereU is a double-well potential. Model~14! permits us to
discard the phenomenological assumption of the fir
thresholdS of the integrate-and-fire models as the intersp
intervals, in this model, are identified with the transition~re-
turn! times between two states. Viewing the state variable
the soma potential, the model assumes a stochastic
from an excited state~the right well! to the resting state~the
left well!. This model lacks a simple intuitive interpretatio
similar to that of Stein’s model, however, the bistability
realistic ~Hodgkin-Huxley-type! neuronal models may serv
as a strong reasoning for them. The periodic compon
seems to be of exogenous nature in all the bistable mod

We have seen that model~1! can be derived using a rea
istic biological reasoning, at least at the level correspond
to the derivation of the OU process as a neuronal model.
problem that stands out is the reset after the spike genera
namely, the question of the periodic component restart.
constant input the reset implies, in physiological terms, t
the nerve impulse initiation destroys all remaining PSPs
in other words, that there is no transmitter persistence. T
is a practically unavoidable feature of one-point models a
can be only phenomenologically overcome by a random
set @17# or by taking into account, at least minimally, th
spatial properties of the neuron@18,19#. For nonhomoge-
neous input the reset, in addition to the destroying the ac
mulated potential built up at the dendrite, may also reset
input signal. Now, we may compromise and accept the p
odic force restart when it does not involve any extern
modulation, but we should not accept it when the exter
input signal is studied. The exogenous reasoning seems t
more physiologically plausible and it is clear that model~1!
was originally proposed for this situation since in@3# the
periodic part was called ‘‘stimulus.’’

Under the scenario of endogenous periodicity, the int
spike intervals are always independent and identically d
tributed random variables forming a renewal process,
only in the case of Poissonian approximation as mentione
@3#. The solution to the first passage time problem for mo
~1! is only the first step in the case of exogenous periodic
What remains is to analyze the effect of not restarting
periodic driving force. The most interesting part of this i
vestigation should not be based on interspike intervals
these are correlated and thus their histogram has a lim
information value, but on the cycle histogram. A stu
analogous to those on the deterministic leaky-integra
model ~3! with periodic driving force should be performed
As predicted in@3#, for the Poissonian limit of firing times
and for the high driving frequencyv, with respect to the time
to a crossing, there would be a negligible difference betw
the models with and without the driving force restart.
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Bulsaraet al. @3# present an extensive discussion of th
results including the case when no periodical signal is
plied, A50 ~see Figs. 4–6 of@3#!. Furthermore, they com
pare their analytical results with the simulations~see Sec. IV
of @3#!. The coincidences between approximations and sim
lations are very impressive. Nevertheless, in all these c
the simulated densities are systematically shifted to
longer interspike intervals than those derived analytica
This effect may be caused by the overestimation of the
passage time by simulation@20#. Therefore, a better way to
judge the efficiency of the method would be a comparis
with existing tables@21# or with sophisticated numerica
methods@22#. These comparisons would increase the re
ability of the results when the periodic driving force is co
sidered. In that case no other method beside simulatio
available.

In @3#, the model performance is divided with respect
the mutual position of the thresholdS andmt which is the
asymptotic voltage of the model without modulation~A50!.
This is obviously the most natural separation because w
S,mt the crossings of the threshold are present, even w
out any noise and vice versa. Nevertheless, a finer divis
implicitly also present in@3#, may lead to the separation o
the model neuron activity into three regions@23,18#. For
mt@S we may expect that the role of the noise is relative
small; the probability density of the first passage time
ol-
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narrow and symmetric—close to the the normal distributio
In the opposite case, whenmt!S and the initial voltage is
not close to the threshold, the firings appear in accorda
with a Poisson process~interspike intervals are exponentiall
distributed! and approximations for the intensity of this pro
cess are well known@24#. The most critical and therefore
also the most interesting case is whenmt'S, where the re-
sults are not so predictable. When periodic modulation
included, this separation can also be made but the ampli
of the periodic signal has to be considered.

In the noise-activated regime,mt,S, a new approxima-
tion method is devised in@3#. The firing time is viewed as
arising from two distinct events; the passage from the ini
depolarization to the asymptotic potentialmt and the passage
from this value to the threshold. The first component ha
known probability density function@1,3#. The second com-
ponent is in@3#, approximated by replacing the model by th
Wiener process with a drift~perfect integrator model! con-
fined between a lower reflectingmt and an upper absorbin
boundaryS. The first-passage-time problem for the Wien
process confined between reflecting and absorbing boun
was solved recently in@25#. A detailed comparison of@3# and
@25# seems to be worth the effort.
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@20# P. Lánský and V. Lánská, Comput. Biol. Med.24, 91 ~1994!.
@21# J. Keilson and H. Ross,Passage Time Distributions for Gauss

ian Markov (Ornstein-Uhlenbeck) Statistical Process
~SIAM, Providence, 1975!.

@22# L. Ricciardi and S. Sato, J. Appl. Prob.25, 43 ~1988!; L.
Ricciardi and S. Sato, inLectures in Applied Mathematics an
Informatics, edited by L. Riciciardi~Manchester University
Press, Manchester, 1990!.

@23# C. Smith, inSingle Neuron Computation, edited by T. McK-
enna, J. Davis, and S. Zornetzer~Academic, Boston, 1992!.

@24# A. Nobile, L. Ricciardi, and L. Sacerdote, J. Appl. Prob.22,
611 ~1985!.

@25# W. Schwarz, J. Appl. Prob.29, 597 ~1992!.


